Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits
نویسندگان
چکیده
We propose and analyze a fully discrete finite element scheme for the phase field model describing the solidification process in materials science. The primary goal of this paper is to establish some useful a priori error estimates for the proposed numerical method, in particular, by focusing on the dependence of the error bounds on the parameter ε, known as the measure of the interface thickness. Optimal order error bounds are shown for the fully discrete scheme under some reasonable constraints on the mesh size h and the time step size k. In particular, it is shown that all error bounds depend on 1 ε only in some lower polynomial order for small ε. The cruxes of the analysis are to establish stability estimates for the discrete solutions, to use a spectrum estimate result of Chen, and to establish a discrete counterpart of it for a linearized phase field operator to handle the nonlinear effect. Finally, as a nontrivial byproduct, the error estimates are used to establish convergence of the solution of the fully discrete scheme to solutions of the sharp interface limits of the phase field model under different scaling in its coefficients. The sharp interface limits include the classical Stefan problem, the generalized Stefan problems with surface tension and surface kinetics, the motion by mean curvature flow, and the Hele-Shaw model.
منابع مشابه
Analysis of finite element approximations of a phase field model for two-phase fluids
This paper studies a phase field model for the mixture of two immiscible and incompressible fluids. The model is described by a nonlinear parabolic system consisting of the nonstationary Stokes equations coupled with the Allen-Cahn equation through an extra phase induced stress term in the Stokes equations and a fluid induced transport term in the Allen-Cahn equation. Both semi-discrete and ful...
متن کاملCoupling Nonlinear Element Free Galerkin and Linear Galerkin Finite Volume Solver for 2D Modeling of Local Plasticity in Structural Material
This paper introduces a computational strategy to collaboratively develop the Galerkin Finite Volume Method (GFVM) as one of the most straightforward and efficient explicit numerical methods to solve structural problems encountering material nonlinearity in a small limited area, while the remainder of the domain represents a linear elastic behavior. In this regard, the Element Free Galerkin met...
متن کاملFinite element approximation of a sharp interface approach for gradient flow dynamics of two-phase biomembranes
A finite element method for the evolution of a two-phase membrane in a sharp interface formulation is introduced. The evolution equations are given as an L2– gradient flow of an energy involving an elastic bending energy and a line energy. In the two phases Helfrich-type evolution equations are prescribed, and on the interface, an evolving curve on an evolving surface, highly nonlinear boundary...
متن کاملA Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...
متن کاملNumerical Simulation of the Hydrodynamics of a Two-Dimensional Gas—Solid Fluidized Bed by New Finite Volume Based Finite Element Method
n this work, computational fluid dynamics of the flow behavior in a cold flow of fluidized bed is studied. An improved finite volume based finite element method has been introduced to solve the two-phase gas/solid flow hydrodynamic equations. This method uses a collocated grid, where all variables are located at the nodal points. The fluid dynamic model for gas/solid two-phase flow is based on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 73 شماره
صفحات -
تاریخ انتشار 2004